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This narrative review comprehensively examines the evolution and current state of the interbody cage technology for lumbar inter-
body fusion (LIF). This review highlights the biomechanical and clinical implications of transition from traditional static cage designs 
to advanced expandable variants for spinal surgery. The review begins by exploring the early developments in cage materials, high-
lighting the roles of titanium and polyetheretherketone in advancing LIF techniques. It discusses the strengths and limitations of these 
materials, leading to innovations in surface modifications and the introduction of novel materials, such as tantalum, as an alternative 
material. Advancements in three-dimensional printing and surface modification technologies form a significant part of this review, 
emphasizing the role of these technologies in enhancing the biomechanical compatibility and osseointegration of interbody cages. 
This review also explores the rise of biodegradable and composite materials such as polylactic acid and polycaprolactone, addressing 
their potential to mitigate long-term implant-related complications. A critical evaluation of static and expandable cages is presented 
in this review, including their respective clinical and radiological outcomes. While static cages have been a mainstay of LIF, expand-
able cages are noted for their ability to adapt to the patient’s anatomy, potentially reducing complications such as cage subsidence. 
However, this review highlights the ongoing debate and the lack of conclusive evidence regarding the superiority of either cage 
type in terms of clinical outcomes. Finally, this review proposes future directions for cage technology, focusing on the integration of 
bioactive substances and multifunctional coatings and development of patient-specific implants. These advancements aim to further 
enhance the efficacy, safety, and personalized approach of spinal fusion surgeries. This review offers a nuanced understanding of the 
evolving landscape of cage technology in LIF and provides insights into the current practices and future possibilities in spinal surgery.
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Introduction

Lumbar interbody fusion (LIF) has emerged as a pivotal 
technique for managing various spinal pathologies, from 

degenerative disc disease to spondylolisthesis and spinal 
instabilities [1]. The clinical relevance of LIF lies in its 
ability to restore spinal alignment, relieve neurological 
symptoms, and provide long-term stability, representing 
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significant advancement in spinal surgery. The evolution 
of this procedure reflects the continual search for optimal 
patient outcomes by balancing surgical invasiveness with 
efficacy [2].

The efficacy of LIF is significantly influenced by the 
choice of interbody cages, which have evolved based on 
the advancement of biomaterial science. Various bioma-
terials are utilized in interbody cage development, from 
traditional materials, such as titanium (Ti) and poly-
etheretherketone (PEEK), to newer materials, such as tan-
talum. Three dimensional- (3D) printing technologies and 
surface modifications using plasma-spraying technology 
have taken interbody cage development to the next level 
[3]. These developments highlight the synergistic relation-
ship between surgical techniques and biomaterials sci-
ence, which is crucial for improving the outcomes of LIF. 
More recently, the introduction of biodegradable materi-
als and the development of the expandable cage technique 
have further expanded the world of interbody cages.

Despite extensive research and clinical applications of 
various cages in LIF, gaps remain in understanding the 
comprehensive impact of cage design and material on 
patient outcomes. Previous studies have often focused on 
isolated aspects of cage performance, such as subsidence 
rates or fusion efficacy, without a holistic view of how 
these factors interact with overall spinal biomechanics 
and long-term outcomes [4]. Additionally, there is a lack 
of consensus regarding the optimal cage type for specific 
clinical scenarios, highlighting the need for a more nu-
anced understanding. This narrative review aims to bridge 
these gaps by providing a comprehensive overview of the 
evolution of cage designs and materials in LIF and criti-
cally evaluating their clinical implications, focusing on 
identifying areas for future research and innovation.

Evolution of Cage Materials in LIF

1. Early developments and traditional materials

1) Titanium
The evolution of the LIF cages began with the develop-
ment of simple materials and techniques. Earlier cages, 
primarily composed of stainless steel and Ti, were de-
signed to provide mechanical stability and facilitate bone 
grafting procedures [5]. These materials were chosen for 
their strength and biocompatibility, although challenges 
such as stress shielding and radiopacity were noted. The 

use of cages in spinal procedures was pioneered in the 
early 1980s, marking a significant shift from traditional 
bone grafting methods [6,7].

Ti and its alloys soon became the primary choice for 
cage fabrication because of their favorable properties, in-
cluding biocompatibility and the ability to promote bone 
ingrowth. Ti6Al4V is typically chosen for interbody cage 
production because of its strength, corrosion resistance, 
low density, biocompatibility, cost-effectiveness, and mag-
netic resonance imaging compatibility [8-10]. Advance-
ments in the design and application of Ti cages in the 
1990s and early 2000s led to various configurations, such 
as cylindrical and box-shaped designs, to improve fusion 
rates and reduce complications, such as cage migration or 
subsidence [7,11].

Despite their widespread use, Ti present certain chal-
lenges. For instance, the mismatch in the elastic modu-
lus between Ti cages and native bone leads to concerns 
about stress shielding, potentially affecting the long-term 
stability and integration of the implant. Seaman et al. 
highlighted that the high elastic modulus of Ti6Al4V can 
lead to cage subsidence and loss of disc height restoration 
[12]. Additionally, the radiopaque nature of Ti hinders 
the precise assessment of fusion progression using imag-
ing techniques, prompting the exploration of alternative 
materials [13]. Recent advancements in 3D-printing and 
surface treatment technologies have enabled the creation 
of 3D-printed Ti interbody devices with elastic moduli 
comparable to native bone [14-16].

2) Polyetheretherketone
The introduction of PEEK has significantly altered the 
landscape of cage materials used for lumbar fusion sur-
gery. PEEK is known for its biomechanical compatibil-
ity with bone, characterized by an elastic modulus that 
closely mirrors that of cortical bone and its radiolucency, 
which facilitates postoperative imaging [17-19]. Clinical 
comparisons between PEEK and Ti cages have yielded 
inconclusive results regarding superiority, with each ma-
terial exhibiting distinct advantages and disadvantages 
[12,20]. Compared with Ti alloys, PEEK reduces stress 
shielding and bone resorption, mitigating implant loosen-
ing risks [21,22]. A meta-analysis by Seaman et al. (2017) 
revealed comparable fusion rates between Ti and PEEK 
interbody cages yet highlighted a 3.59-fold higher subsid-
ence likelihood with Ti [12]. Consequently, from the per-
spective of subsidence and stress shielding, PEEK appears 
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to offer advantages over Ti.
However, PEEK’s hydrophobic characteristics and 

bioinertness may impede its osteointegration [23]. Fur-
thermore, biofilm formation on PEEK surfaces impedes 
binding to the host bone, thereby hindering solid fusion 
[24]. PEEK cages have also been associated with local 
inflammation, potentially leading to complications such 
as bone nonunion and osteolysis [20,25,26]. Efforts to ad-
dress these shortcomings have led to surface modification 
of PEEK to enhance its bioactivity. [27-29].

3) Tantalum
Tantalum, increasingly utilized in orthopedics due to its 
excellent histocompatibility and corrosion resistance, 
shows promise as an interbody fusion cage biomaterial 
[30-32]. Tantalum and its derivatives surpass Ti and its al-
loys in terms of mechanical strength, corrosion resistance, 
and biocompatibility [33-37]. Tantalum exhibits superior 
osseointegration and antibacterial properties. Porous tan-
talum has garnered significant interest among its deriva-
tives due to its elastic modulus and porous architecture, 
which closely resembles cancellous bone [38]. Currently, 
Ta and its derivatives are effectively employed in artificial 
joint replacements [39], treatment of femoral head necro-

sis [40], and dental material applications [41], benefiting a 
wide patient population. In spinal surgery, the application 
of tantalum extends to treating infectious bone defects and 
anterior cervical discectomy and fusion [42-46] (Fig. 1).

Clinical results from various studies have demonstrated 
that porous tantalum cages (PTCs) are effective and safe 
for spinal surgery, offering several advantages. In ante-
rior lumbar interbody fusion (ALIF), PTCs significantly 
improve lumbar lordosis (LL), reduce back pain, and en-
hance the quality of life without major complications [47]. 
Thoracolumbar burst fractures provide superior sagittal 
profile restoration compared to iliac crest bone grafts, 
with a lower tendency for correction loss over time [48]. 
This suggests that PTCs could be a viable alternative to 
autologous bone grafting, potentially avoiding donor-site 
morbidity. Furthermore, in posterior lumbar interbody 
fusion (PLIF), PTCs show promising results in early bone 
integration and stability, as indicated by computed tomog-
raphy findings of trabecular bone remodeling and lower 
incidences of vertebral endplate cyst formation compared 
with Ti-coated PEEK (Ti-PEEK) cages [49]. Collectively, 
these studies suggest that PTCs can achieve immediate 
stabilization, facilitate bone fusion, and improve long-
term outcomes in spinal surgery.

Fig. 1. Examples of tantalum cages. Representative cases illustrate the application of tantalum cages, such as in a 68-year-
old male patient where a tantalum cage was placed in the L1-2 intervertebral space, resulting in artifact generation on 
postoperative CT and MRI. 
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2. Advancements in 3D-printing and Surface Modification

1) 3D-printing Technology
The emergence of 3D-printing technology in spinal cage 
production marks a pivotal development, allowing the 
creation of patient-specific implants with intricate, cus-
tomizable porous structures [50]. This technology has 
opened new avenues for designing cages that promote 
bone ingrowth and vascularization, potentially optimiz-
ing the fusion process [51,52]. By utilizing materials such 
as Ti, 3D-printed structures offer a harmonious blend of 
mechanical resilience and biological functionality, dem-
onstrating the potential to enhance osseointegration and 
reduce the risk of non-device-related reoperation [53-55]. 
For example, a 3D-printing features an elastic modulus 
closely matching that of the native bone, while a conven-
tional titanium alloy cage has an approximately 10-folds 
higher elastic modulus [14-16].

The biomechanical superiority of these 3D-printed 
cages has led to favorable results in previous clinical 
studies. Amini et al. showed that in patients with stand-
alone lateral lumbar interbody fusion (LLIF) patients, 3D-
printed Ti cages exhibited a significantly lower early sub-
sidence rate than PEEK cages [56]. Corso et al. analyzed 
186 patients (50.5% male, mean age 59.2±12.5 years) with 
a minimum follow-up of 6 months. Of these, 96 were 
treated with 3D-printed Ti implants and 90 with PEEK 
across 186 implant levels, of which 51.6% utilized 3D-
printed Ti implants [54]. They concluded that, in terms 
of non-device-related reoperation events, 3D-printed Ti 
cages demonstrated a minimal risk profile compared with 
traditional non-3D printed cages. Yang et al. reviewed 150 
patients who underwent 1-to 2-level PLIF with a mini-
mum follow-up of 2 years. The results indicated that 3D-
printed Ti cages achieved significantly higher fusion rates 
at both 1 (3D-printed Ti, 86.9%; PEEK, 67.7%; p=0.002) 
and 2 years (3D-printed Ti, 92.9%; PEEK, 82.3%; p=0.037) 
postoperatively than the PEEK cages [57]. There was no 
significant difference in subsidence rates between the two 
materials. These results suggests that 3D-printed Ti cages 
are a viable and safe option for PLIF because they provide 
a stable construct.

2) Surface modifications
The surface properties of the interbody cages signifi-

cantly affect osteointegration. Enhanced surface porosity 
promotes osteointegration by increasing the surface area 

and incorporating osteogenic and angiogenic factors 
such as BMP-2 [58]. Previous studies have demonstrated 
the clinical and radiological advantages of these surface-
modified interbody cages. Guyer et al. found that porous 
Ti exhibits a stronger implant-bone interface than the 
conventional PEEK and allografts, indicating its superior 
potential for osseointegration and faster achievement of 
spinal fusion stability [59].

As for the porous PEEK cages, Torstrick et al. exam-
ined the effects of porosity and pore size on the cellular 
responses to PEEK using micro-CT analysis. They dis-
covered that porous PEEK exhibited increased cell pro-
liferation and cell-mediated mineralization compared 
with smooth PEEK and Ti [60]. Furthermore, to address 
PEEK’s inherent hydrophobicity and bioinertness of 
PEEK, surface modifications incorporating materials such 
as hydroxyapatite (HA), calcium silicate (CS), and Ti have 
been explored to augment PEEK’s bioactivity [27-29,61]. 
Sun et al. investigated the integration of soft tissues with 
HA/PEEK composite scaffolds. The results showed that 
although the overall bonding strength was influenced 
mainly by pore size rather than HA content, HA played a 
significant role in enhancing the firm adhesion of soft tis-
sue to PEEK-based composites, a key factor in preventing 
postoperative effusion [61]. 

As for the CS/PEEK cages, Chu et al. demonstrated 
in a goat cervical interbody fusion model that CS/PEEK 
cages outperformed pure PEEK cages in terms of fu-
sion strength at 12 and 26 weeks, as evidenced by X-ray 
analysis. Micro-computed tomography revealed greater 
new bone ingrowth with CS/PEEK cages, achieving near-
complete fusion at 26 weeks. Additionally, these cages 
exhibited superior mechanical stability and stiffness, as 
confirmed by spine kinematics assays. Histological evalu-
ations have highlighted rapid osseointegration and bone 
formation around the CS/PEEK cages [21]. 

Regarding the Ti-PEEK cage, Zhu et al. reported that 
PEEK cages with Ti and HA coatings, in contrast to un-
coated PEEK cages, achieved a significantly higher fu-
sion rate three months after single-level transforaminal 
lumbar interbody fusion (TLIF) [62]. Two recent meta-
analyses comparing Ti-PEEK cages with uncoated PEEK 
cages in lumbar fusion surgeries found comparable effects 
on bone fusion and cage subsidence across all follow-up 
periods, indicating no significant differences in patient-
reported outcomes [27,28]. However, Ti-PEEK cages offer 
the combined benefits of Ti and PEEK: an elastic modulus 
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akin to that of human cortical bone, enhanced osteoid cell 
growth, and increased cell adhesion space.

Torstrick et al. demonstrated that the microstructure 
of surface-coated PEEK, including its pore morphology, 
can be precisely manipulated by varying the size of the 
sodium chloride crystals, with pores adopting the cubic 
shape of the porogen. Their findings suggested that intro-
ducing a porous surface layer to polymeric implants can 
enhance clinical outcomes while preserving a sufficient 
load-bearing capacity [63]. There are concerns regarding 
the durability and impaction resistance of the coatings, 
mainly because of the substantial impact forces encoun-
tered during the insertion of cages into the intervertebral 
space. Torstrick et al. also showed that while porous PEEK 
devices sustained minimal damage during aggressive 
cervical impaction, devices with Ti-PEEK experienced a 
significant loss in their initial Ti coverage [60].

3. Biodegradable and composite materials

Recent advancements have also led to the rise of biode-
gradable materials, such as polylactic acid (PLA) and 
polycaprolactone (PCL), in fabricating spinal cages. These 
materials are designed to degrade over time, ideally re-
placed by natural bone, thus mitigating long-term com-
plications associated with permanent implants [64,65]. 
Although initial applications face challenges related to 
mechanical integrity and controlled degradation, recent it-
erations have shown promising outcomes. This is particu-
larly evident when these materials are used in conjunction 
with osteoconductive or osteoinductive substances to en-
hance the process of spinal fusion [66,67]. The evolution 
of biodegradable cages continues to be a central theme 
in spinal surgery research, focusing on optimizing their 
composition and structure to improve clinical outcomes. 
Biodegradable materials such as PLA and PCL are at the 
forefront of this innovation due to their ability to reduce 
long-term complications associated with traditional im-
plants [3,64,65,68].

1) Polylactic acid
The primary polymers used were PLA and PCL, which are 
Food and Drug Administration-approved polyesters. The 
formation of block copolymers such as poly L-lactic acid 
(PLLA), poly-D, L-lactic acid, and poly(lactic-co-glycolic 
acid) (PLGA) is achieved through the covalent bonding of 
different polymer units. Among these, aliphatic polyesters, 

particularly PLAs, are the most promising category [69-
71]. Previous studies have confirmed the biocompatibility 
of PLA with dural and neural tissues, and further research 
has indicated that PLA has no detrimental effects on neu-
ronal cells or pH alterations during PLA implant degrada-
tion at the implantation site [72-75].

Despite their theoretical advantages, a systematic review 
focused on biodegradable implants, predominantly poly-
lactides, and their comparison with conventional implants 
showed that the routine clinical application of absorbable 
cages lacks sufficient support, primarily because of unfa-
vorable long-term fusion rates [76]. The inferior clinical 
outcomes of biodegradable cages are hypothesized to arise 
from early degradation and strength loss, leading to oste-
olysis and accelerated cage subsidence [77,78].

2) Polycaprolactone
In contrast to PLA, which is a bulk-degrading polymer 
[79], PCL is bioerodible and maintains its initial elastic 
modulus and 95% mass for up to 12 months [80]. Owing 
to its superior rheological and viscoelastic properties com-
pared to other aliphatic polyesters such as PLLA, poly-L-
lactide-co-d, and L-lactide acid [81], PCL is a promising 
candidate for designing slow-degrading implants, mainly 
because of its favorable melt extrusion properties. PCL is 
distinguished by its superior physicochemical properties, 
such as structural stability [82], flexibility [83], biocom-
patibility [84], and biodegradability [85]. In vivo, PCL 
demonstrates slow degradation, with virtually no mo-
lecular weight changes observed after six months [86]. It 
exhibits greater resistance to degradation in biofluids than 
other polymers, and its low cost and accessibility add to its 
advantages [87,88]. Moreover, PCL enhances cell viability 
and migration more effectively than rapidly degradable 
PLGA-3D scaffolds, as demonstrated in both in vitro and 
in vivo studies [89]. Coinciding with advancements in ad-
ditive biomanufacturing, PCL has gained prominence and 
become increasingly preferred for fabricating biodegrad-
able cages for spinal fusion.

In multiple large preclinical animal studies, a compos-
ite of PCL with ceramics, specifically calcium phosphate 
(CaP), has emerged as the optimal biomaterial for os-
seous healing in critical-size tibial defects [90,91]. This 
combination results in composite biomaterials that offer 
improved mechanical properties, controlled degradation 
rates, and enhanced bioactivity, making them well-suited 
for bone tissue engineering applications [92,93]. Bioactive 
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and bioresorbable scaffolds, made from medical-grade 
PCL with 20% β-tricalcium phosphate incorporation and 
bioresorbable PCL scaffolds coated with a biomimetic 
CaP layer plus recombinant human bone morphogenetic 
protein-2 (rhBMP-2), have been effectively utilized to at-
tain interbody spinal fusion in both lumbar porcine and 
thoracic ovine models [66,94]. Li et al. noted that auto-
graft-free biodegradable PCL-TCP composite scaffolds 
facilitated bone tissue ingrowth and maintained mechani-
cal load-bearing capacity post-implantation, achieving a 
spinal fusion efficacy comparable to that of Ti cages with 
autografts in sheep anterior cervical discectomy and fu-
sion surgeries [95]. However, similar to PLA, PCL faces 
the challenge of inferior mechanical properties compared 
to permanent materials such as Ti and PEEK. This perfor-
mance gap becomes more evident as degradation occurs, 
potentially resulting in reduced stability over time.

3) Future of biodegradable materials
The final goal is to develop cages that offer the best 
strength and durability with eventual resorption and re-
placement by natural bone. The key focus areas include 
addressing issues such as premature degradation and 
ensuring adequate mechanical support during the criti-
cal bone healing and fusion period. Research is geared 
towards developing materials with optimized degradation 
rates, improved mechanical strength, and enhanced bioac-
tivity to support the spine until complete osseointegration 
is achieved. Regarding mechanical strength, improving 
the stiffness of PCL scaffolds can be achieved by increas-
ing their mineral content, particularly with HA. Shor et 
al. demonstrated that adding 25% HA to a composite 
resulted in a 40% increase in the compressive modulus 
[96]. Furthermore, the stiffness of the PCL/HA mixture 
increases proportionally with the HA content [97].

The unmodified PCL surfaces exhibited limited cell ad-
hesion, attachment, proliferation, and bioactivity. Applying 
nano-HA coatings, a type of CaP with a composition and 
crystal structure akin to human bone may enhance cyto-
compatibility [98]. Yong’s study indicates that a CaP-coated 
PCL-based scaffold with 0.54 μg rhBMP-2 is as effective as 
an autograft from the rib head. This created a conducive 
environment for thoracic interbody spinal fusion in the 
sheep thoracic spine model [99]. Recently, Duarte et al. 
showcased a novel biopolymer of polycaprolactone doped 
with polydopamine and polymethacrylic acid, which, 
when foamed directly into a bone defect through a special-

ized high-pressure portable device, achieved immediate 
stabilization of osseous components [100]. This technique 
yields a 3D structure with morphological properties simi-
lar to those of the trabecular bone, showing significant 
potential for instrumentation-free interbody fusion.

4. Static vs. expandable cages in LIF

1) Static cages
Static cages, predominantly used in LIF, are pivotal in ad-
dressing degenerative spinal disorders [101,102]. The evo-
lution of interbody fusion cages from the earliest threaded 
BAK designs to the current Ti or PEEK cages has led to 
shapes more closely resembling intervertebral space. This 
design shift offers larger cancellous bone-filling spaces, 
increased fusion area, enhanced load-bearing capacity, 
and improved stability. These cages, characterized by their 
fixed shape and size, are designed for strength and ease 
of insertion, crucial elements in lumbar surgery. Their 
simple and robust design provides reliable support to the 
spinal segment, ensuring a consistent approach for vari-
ous lumbar pathologies [20,103-105]. 

Recently, there has been a growing emphasis among 
physicians and patients on minimally invasive surgical 
techniques for implanting the largest feasible interverte-
bral implant through the smallest possible incision with 
minimal surgical exposure. The anterior approach facili-
tates the use of larger bone cages and grafts than the pos-
terior approach, demonstrating enhanced deformity cor-
rection capabilities and superior initial stability [106-108]. 
Over the last 50 years, significant advancements in surgi-
cal methods and instrumentation for ALIF and LLIF have 
been observed. Critical factors, such as cage dimensions, 
including width, length, height, and contact surface area, 
are pivotal in maximizing surface contact and ensuring 
the stability of ALIF and LLIF [102]. Radiologically, static 
cages have been instrumental in achieving the desired 
outcomes in spinal surgeries. Research has indicated their 
efficacy in restoring and maintaining segmental lordosis 
(SL) and disc height, which are critical for preserving the 
natural curvature and biomechanics of the spine [109-
111]. 

Recent developments in endoscopy-assisted spine fu-
sion surgeries have demonstrated clinical and radiologi-
cal outcomes comparable to conventional open surgery 
[112-115], thus emphasizing the need for specialized cage 
designs suitable for minimal incision techniques. Kim et 
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al. recently demonstrated the feasibility of using a larger 
cage originally designed for LLIF in biportal endoscopic 
TLIF to achieve a favorable fusion rate [116] (Fig. 2). With 
the increasing adoption of minimally invasive techniques, 
technological advancements have led to the development 
of interbody devices designed to expand after placement.

2) Expandable cages
Unlike static devices, expandable cages are designed for 
insertion with a minimal profile and can be expanded in 
situ to reduce iatrogenic endplate damage during cage in-
sertion [117]. The cages were designed to adjust their size 
and shape to conform to the unique anatomical needs of 
the patient’s intervertebral space. Their ability to expand 
post-insertion allows for a customized fit and enhanced 
spinal stabilization, significantly evolving from traditional 
static cage designs.

Expandable cages can be used for TLIF, ALIF, and LLIF 
[118]. Although TLIF is a procedure in which expandable 
cages were initially implemented [119], this procedure 
can be limited to cases with extensive scarring and high-
grade spondylolisthesis [4]. Meanwhile, ALIF and LLIF 
allow the insertion of wide and large interbody cages, 
resulting in a greater endplate contact surface than TLIF 
cages [111]. However, implanting such large cages often 
requires strong impaction when static cages are used. In 
contrast, expandable LLIF cages obviate the need for the 

forceful impaction associated with static spacers, thereby 
potentially reducing the risk of cage subsidence [118].

From the radiological perspective, the use of expand-
able cages in lumbar fusion has yielded promising results. 
Expandable cages have been reported to yield superior 
disc height increments and SL restorations in lumbar fu-
sion patients compared with static cages [120-124]. Re-
search indicates that these cages effectively maintain or 
improve the SL and disc height, which are critical factors 
in achieving optimal spinal alignment and biomechanics 
after surgery. Recent meta-analyses indicate that the de-
sign of expandable cages plays a key role in reducing the 
incidence of cage subsidence in lateral interbody fusion, 
a frequent complication in lateral lumbar surgeries, thus 
helping to maintain the structural integrity of the fused 
spinal segment [125] (Fig. 3).

3) Comparative studies and current evidence
It remains unclear whether expandable cages are associ-
ated with improved clinical outcomes in patients with 
lumbar fusion compared with static cages [125-128]. 
Three recent meta-analyses assessing the clinical out-
comes of expandable cages in TLIF revealed no significant 
differences in Visual Analog Scale scores for back and leg 
pain, Oswestry Disability Index (ODI), and fusion rates 
between static and expandable cages. [126-128]. Another 
meta-analysis evaluating clinical outcomes of expandable 
cages in both TLIF and PLIF found no significant differ-
ences in ODI, fusion rates, LL, blood loss, and operation 
time when comparing the use of static versus expandable 
cages [125]. However, the meta-analysis above docu-
mented the role of expandable cages in reducing operative 
time and intraoperative blood loss, thereby contributing 
to faster patient recovery and reduced hospital stays [126]. 
These findings indicate the potential of expandable cages 
to enhance patient comfort and accelerate postsurgical 
rehabilitation and recovery.

In terms of radiological outcomes, expandable cages 
can achieve superior disc height increments and SL resto-
ration in lumbar fusion patients compared to static cages. 
[120-124,126,127]. However, a meta-analysis focusing on 
the radiological outcomes of TLIF revealed no statistically 
significant differences in the spinal sagittal alignment (SL 
and LL) or pelvic parameters [127]. Concurrently, ex-
pandable cages have been linked to a reduced incidence 
of subsidence, as evidenced in previous studies [121-
123,129,130]. This reduction may be attributed to their 

Fig. 2. The lumbar interbody cages vary in design and size. (A) A titanium cage 
suitable for TLIF and PLIF, (B) A larger PEEK cage designed for OLIF, LLIF, or 
ALIF. Views (C) and (D) present lateral and axial perspectives of two distinct 
cages. The larger cage measures 15 mm in width and 40 mm in length, making 
it suitable for endoscopic transforaminal lumbar interbody fusion, while the 
smaller cage’s dimensions are 10 mm by 32 mm. These figures are presented 
with permission from the authors (Kim JE et al., World Neurosurgery, 2023). 

A B

C D
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capacity to attain a tailored fit within the intervertebral 
space. However, two recent meta-analyses focusing on 
expandable TLIF cages did not demonstrate any signifi-
cant difference in cage subsidence between static and 
expandable cage usage [126,127]. Frisch et al. and Li et 
al. reported that expandable LLIF cages resulted in an ex-
pandable group with a significantly lower subsidence rate 
[117,131,132]. They also reported increased postoperative 
disc space measurements compared with preoperative 
levels, noting a statistically more significant change in 
static cages than in expandable cages [117,131,132]. This 
difference may be due to the over-distraction required 
for static cage insertion. Consequently, an expandable 
LLIF cage that avoids forceful insertion may play a role 
in preventing subsidence. Further research is needed to 
ascertain whether expandable cages exhibited variability 
in their subsidence prevention efficacy based on the surgi-
cal technique employed and to understand the underlying 
reasons for such differences.

The association between expandable cages and im-
proved clinical outcomes in patients with lumbar fusion 
compared to fixed cages remains uncertain. Expand-
able cages have several advantages in certain aspects. 
Therefore, choosing between static and expandable cages 
should be based on patient-specific factors and surgical 

objectives. Surgeons need to weigh these findings against 
individual patient needs, surgical goals, and the specific 
pathology being addressed to choose the most appropriate 
interbody device.

4) Future directions in cage technology for LIF
As technology continues to evolve, future research should 
explore the integration of bioactive substances into 3D-
printed cages. Embedding growth factors or osteoinduc-
tive materials within the scaffold structure could further 
promote bone growth and fusion [133,134]. In addition, 
ongoing advancements in materials science may introduce 
new biocompatible materials that enhance the functional-
ity of 3D-printed cages. The combination of customizable 
design, improved material properties, and the integration 
of bioactive agents is poised to significantly advance the 
efficacy and safety of LIF procedures, paving the way for 
more personalized and effective spinal treatments.

Research has been increasingly focused on multifunc-
tional coatings that combine osteoinductive properties 
with antibacterial capabilities. The development of dual-
function coatings could revolutionize LIF procedures 
by enhancing bone growth and reducing the risks [135]. 
Future studies must explore incorporating novel materials 
and bioactive agents into these coatings, potentially lead-

Fig. 3. (A) A 71-year-old female patient underwent L4-5 OLIF with a static PEEK cage and exhibited cage subsidence in the 3-month postoperative 
follow-up X-ray. (B) A 75-year-old female patient received L4-5 OLIF with an expandable cage and has sustained proper alignment without any 
signs of cage subsidence for 3 months.
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ing to even greater improvements in clinical outcomes. 
As this field evolves, the focus will likely shift towards 
customizing coatings based on specific patient needs and 
surgical context, further personalizing LIF treatments and 
improving patient-specific outcomes.

The future of LIF is likely to be shaped by continuous 
innovations in material science and technology. Research 
has focused on developing materials directly delivering 
targeted therapeutic agents, such as growth factors or 
antibiotics, to the fusion site [20]. Additionally, the explo-
ration of personalized implants tailored to each patient’s 
specific anatomical and pathological conditions represents 
a significant advancement in patient-specific care. These 
emerging materials and technologies have the potential to 
significantly improve the efficacy, safety, and patient out-
comes of spinal fusion surgeries, marking a new era in the 
treatment of spinal disorders.

Conclusions

In conclusion, the dynamic evolution of cage technology in 
LIF represents a significant advancement in managing spi-
nal disorders, offering spine surgeons diverse tools tailored 
to optimize patient outcomes. The transition from tradi-
tional materials to innovative synthetic, biodegradable, 
and composite materials reflects a deeper understanding 
of biomechanics and materials science. Advancements in 
3D printing and customizable solutions have ushered in 
an era of patient-specific implants, ensuring a closer match 
between anatomical and pathological conditions. The ex-
ploration of surface modifications, bioactive coatings, and 
emerging materials such as smart biomaterials signifies a 
paradigm shift towards implants that support structural 
integrity and actively participates in the biological healing 
process. Moreover, the development of static and expand-
able cages, each with distinct clinical and radiological 
outcomes, highlights the importance of personalized treat-
ment strategies for spinal surgery. These technological 
advancements integrated with clinical expertise have the 
potential to enhance the efficacy, safety significantly, and 
overall success of spinal fusion procedures, marking a piv-
otal step forward in orthopedic surgery.
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