1. Hsu CC, Wang JL, Hou SM, Chao CK, Lin J. Pushout strength of tibial locking screws: development of finite element models. J Chin Inst Eng 2003;26:817–23.
3. Patel PS, Shepherd DE, Hukins DW. The effect of screw insertion angle and thread type on the pullout strength of bone screws in normal and osteoporotic cancellous bone models. Med Eng Phys 2010;32:822–8.
4. Varghese V, Venkatesh K, Kumar GS. Pull out strength of pedicle screw in normal and osteoporotic cancellous bone models. In: Proceedings of the 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES); 2014 Dec 8-10; Kuala Lumpur, Malaysia. Piscataway (NJ). IEEE. 2015
https://doi.org/10.1109/IECBES.2014.7047541
5. Varghese V, Saravana Kumar G, Krishnan V. Effect of various factors on pull out strength of pedicle screw in normal and osteoporotic cancellous bone models. Med Eng Phys 2017;40:28–38.
6. Helgeson MD, Kang DG, Lehman RA Jr, Dmitriev AE, Luhmann SJ. Tapping insertional torque allows prediction for better pedicle screw fixation and optimal screw size selection. Spine J 2013;13:957–65.
7. Daftari TK, Horton WC, Hutton WC. Correlations between screw hole preparation, torque of insertion, and pullout strength for spinal screws. J Spinal Disord 1994;7:139–45.
8. Okuyama K, Abe E, Suzuki T, Tamura Y, Chiba M, Sato K. Can insertional torque predict screw loosening and related failures?: an in vivo study of pedicle screw fixation augmenting posterior lumbar interbody fusion. Spine (Phila Pa 1976) 2000;25:858–64.
9. Mizuno K, Shinomiya K, Nakai O, Shindo S, Otani K. Intraoperative insertion torque of lumbar pedicle screw and postoperative radiographic evaluation: short-term observation. J Orthop Sci 2005;10:137–44.
10. Varghese V, Ramu P, Krishnan V, Saravana Kumar G. Pull out strength calculator for pedicle screws using a surrogate ensemble approach. Comput Methods Programs Biomed 2016;137:11–22.
11. Varghese V, Krishnan V, Kumar GS. Simulation of axial pull out of pedicle screw in synthetic bone models. In: Proceedings of the 2nd International Conference on Biomedical Systems, Signals and Images; 2016 Feb 24-26; Chennai, India. Chennai. Indian Institute of Technology Madras. 2016
https://doi.org/10.13140/RG.2.1.3355.8643
12. Varghese V, Kumar GS, Venkatesh K. A finite element analysis based sensitivity studies on pull out strength of pedicle screw in synthetic osteoporotic bone models. In: Proceedings of the 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES); 2016 Dec 4-8; Kuala Lumpur, Malaysia. Piscataway (NJ). IEEE. 2017
https://doi.org/10.1109/IECBES.2016.7843478
13. Chatzistergos PE, Magnissalis EA, Kourkoulis SK. A parametric study of cylindrical pedicle screw design implications on the pullout performance using an experimentally validated finite-element model. Med Eng Phys 2010;32:145–54.
14. Solitro GF, Amirouche F. Innovative approach in the development of computer assisted algorithm for spine pedicle screw placement. Med Eng Phys 2016;38:354–65.
15. Berner ES. Clinical decision support systems. 2nd ed. New York (NY): Springer; 2007.
16. Yang H, Ma X, Guo T. Some factors that affect the comparison between isotropic and orthotropic inhomogeneous finite element material models of femur. Med Eng Phys 2010;32:553–60.
17. Vukicevic AM, Stojadinovic M, Radovic M, et al. Automated development of artificial neural networks for clinical purposes: application for predicting the outcome of choledocholithiasis surgery. Comput Biol Med 2016;75:80–9.
18. Almeida JD, Silva AC, Teixeira JA, Paiva AC, Gattass M. Surgical planning for horizontal strabismus using Support Vector Regression. Comput Biol Med 2015;63:178–86.
19. Abbott D. Applied predictive analytics: principles and techniques for the professional data analyst. Indianapolis (IN): Wiley; 2014.
20. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA data mining software: an update. ACM SIGKDD Explor Newsl 2009;11:10–8.
21. Demir T, Camuscu N, Tureyen K. Design and biomechanical testing of pedicle screw for osteoporotic incidents. Proc Inst Mech Eng H 2012;226:256–62.
22. Amaritsakul Y, Chao CK, Lin J. Comparison study of the pullout strength of conventional spinal pedicle screws and a novel design in full and backed-out insertions using mechanical tests. Proc Inst Mech Eng H 2014;228:250–7.
23. Inceoglu S, Ferrara L, McLain RF. Pedicle screw fixation strength: pullout versus insertional torque. Spine J 2004;4:513–8.
24. Kopperdahl DL, Keaveny TM. Yield strain behavior of trabecular bone. J Biomech 1998;31:601–8.
25. Mosekilde L, Mosekilde L, Danielsen CC. Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone 1987;8:79–85.
26. ASTM International. ASTM F1839-08(2016): standard specification for rigid polyurethane foam for use as a standard material for testing orthopaedic devices and instruments. West Conshohocken (PA): ASTM International; 2016.
https://doi.org/10.1520/F1839-08R16
27. ASTM International. ASTM F543-02: standard specification and test methods for metallic medical bone screws. West Conshohocken (PA): ASTM International; 2002.
https://doi.org/10.1520/F0543-02
28. Mitra SR, Datir SP, Jadhav SO. Morphometric study of the lumbar pedicle in the Indian population as related to pedicular screw fixation. Spine (Phila Pa 1976) 2002;27:453–9.
29. Zindrick MR, Wiltse LL, Widell EH, et al. A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine. Clin Orthop Relat Res 1986;(203): 99–112.