1. Grant CA, Izatt MT, Labrom RD, Askin GN, Glatt V. Use of 3D printing in complex spinal surgery: historical perspectives, current usage, and future directions. Tech Orthop 2016;31:172–180.
2. Zhang X, Zhang Y. Tissue engineering applications of three-dimensional bioprinting. Cell Biochem Biophys 2015;72:777–782. PMID:
25663505.
3. Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng 2015;9:4PMID:
25866560.
4. Zhang J, Zhao S, Zhu Y, et al. Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Acta Biomater 2014;10:2269–2281. PMID:
24412143.
5. Tarafder S, Davies NM, Bandyopadhyay A, Bose S. 3D printed tricalcium phosphate scaffolds: effect of SrO and MgO doping on in vivo osteogenesis in a rat distal femoral defect model. Biomater Sci 2013;1:1250–1259. PMID:
24729867.
6. Simon JL, Rekow ED, Thompson VP, Beam H, Ricci JL, Parsons JR. MicroCT analysis of hydroxyapatite bone repair scaffolds created via three-dimensional printing for evaluating the effects of scaffold architecture on bone ingrowth. J Biomed Mater Res A 2008;85:371–377. PMID:
17688275.
7. Wang Y, Li X, Wei Q, Yang M, Wei S. Study on the mechanical properties of three-dimensional directly binding hydroxyapatite powder. Cell Biochem Biophys 2015;72:289–295. PMID:
25556069.
8. Seitz H, Rieder W, Irsen S, Leukers B, Tille C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 2005;74:782–788. PMID:
15981173.
9. Qian C, Zhang F, Sun J. Fabrication of Ti/HA composite and functionally graded implant by three-dimensional printing. Biomed Mater Eng 2015;25:127–136. PMID:
25813951.
10. Kutikov AB, Gurijala A, Song J. Rapid prototyping amphiphilic polymer/hydroxyapatite composite scaffolds with hydration-induced self-fixation behavior. Tissue Eng Part C Methods 2015;21:229–241. PMID:
25025950.
11. Kim K, Yeatts A, Dean D, Fisher JP. Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression. Tissue Eng Part B Rev 2010;16:523–539. PMID:
20504065.
12. Van Bael S, Desmet T, Chai YC, et al. In vitro cell-biological performance and structural characterization of selective laser sintered and plasma surface functionalized polycaprolactone scaffolds for bone regeneration. Mater Sci Eng C Mater Biol Appl 2013;33:3404–3412. PMID:
23706227.
13. Williams JM, Adewunmi A, Schek RM, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 2005;26:4817–4827. PMID:
15763261.
14. Wu AM, Shao ZX, Wang JS, et al. The accuracy of a method for printing three-dimensional spinal models. PLoS One 2015;10:e0124291. PMID:
25915641.
15. Wu XB, Wang JQ, Zhao CP, et al. Printed three-dimensional anatomic templates for virtual preoperative planning before reconstruction of old pelvic injuries: initial results. Chin Med J (Engl) 2015;128:477–482. PMID:
25673449.
16. McMenamin PG, Quayle MR, McHenry CR, Adams JW. The production of anatomical teaching resources using three-dimensional (3D) printing technology. Anat Sci Educ 2014;7:479–486. PMID:
24976019.
17. West SJ, Mari JM, Khan A, et al. Development of an ultrasound phantom for spinal injections with 3-dimensional printing. Reg Anesth Pain Med 2014;39:429–433. PMID:
25105983.
18. Xiao JR, Huang WD, Yang XH, et al. En bloc resection of primary malignant bone tumor in the cervical spine based on 3-dimensional printing technology. Orthop Surg 2016;8:171–178. PMID:
27384725.
19. Goel A, Jankharia B, Shah A, Sathe P. Three-dimensional models: an emerging investigational revolution for craniovertebral junction surgery. J Neurosurg Spine 2016;25:740–744. PMID:
27367939.
20. Karlin L, Weinstock P, Hedequist D, Prabhu SP. The surgical treatment of spinal deformity in children with myelomeningocele: the role of personalized three-dimensional printed models. J Pediatr Orthop B 2017;26:375–382. PMID:
27902634.
21. Wu C, Tan L, Lin X, Hu H. Clinical application of individualized reference model of sagittal curves and navigation templates of pedicle screw by three-dimensional printing technique for thoracolumbar fracture with dislocation. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2015;29:1381–1388. PMID:
26875271.
22. Li C, Yang M, Xie Y, et al. Application of the polystyrene model made by 3-D printing rapid prototyping technology for operation planning in revision lumbar discectomy. J Orthop Sci 2015;20:475–480. PMID:
25822935.
23. Yang M, Li C, Li Y, Zhao Y, et al. Application of 3D rapid prototyping technology in posterior corrective surgery for Lenke 1 adolescent idiopathic scoliosis patients. Medicine (Baltimore) 2015;94:e582. PMID:
25715261.
24. Duncan JM, Nahas S, Akhtar K, Daurka J. The use of a 3D printer in pre-operative planning for a patient requiring acetabular reconstructive surgery. J Orthop Case Rep 2015;5:23–25. PMID:
27299013.
25. Rehder R, Abd-El-Barr M, Hooten K, Weinstock P, Madsen JR, Cohen AR. The role of simulation in neurosurgery. Childs Nerv Syst 2016;32:43–54. PMID:
26438547.
26. Hughes A, Soden P, Abdulkarim A, McMahon C, Hurson C. The use of rapid prototyping and 3D printing in revision hip arthroplasty. Bone Joint J 2014;96B(SUPP 10): 2.
27. Rong X, Wang B, Chen H, et al. Use of rapid prototyping drill template for the expansive open door laminoplasty: a cadaveric study. Clin Neurol Neurosurg 2016;150:13–17. PMID:
27567386.
28. Javan R, Bansal M, Tangestanipoor A. A prototype hybrid gypsum-based 3-dimensional printed training model for computed tomography-guided spinal pain management. J Comput Assist Tomogr 2016;40:626–631. PMID:
27434789.
29. Madrazo I, Zamorano C, Magallon E, et al. Stereolithography in spine pathology: a 2-case report. Surg Neurol 2009;72:272–275. PMID:
18614210.
30. Liew Y, Beveridge E, Demetriades AK, Hughes MA. 3D printing of patient-specific anatomy: a tool to improve patient consent and enhance imaging interpretation by trainees. Br J Neurosurg 2015;29:712–714. PMID:
25822093.
31. Guo F, Dai J, Zhang J, et al. Individualized 3D printing navigation template for pedicle screw fixation in upper cervical spine. PLoS One 2017;12:e0171509. PMID:
28152039.
32. Deng T, Jiang M, Lei Q, Cai L, Chen L. The accuracy and the safety of individualized 3D printing screws insertion templates for cervical screw insertion. Comput Assist Surg (Abingdon) 2016;21:143–149. PMID:
27973960.
33. Bundoc RC, Delgado GG, Grozman SA. A novel patient-specific drill guide template for pedicle screw insertion into the subaxial cervical spine utilizing stereolithographic modelling: an in vitro study. Asian Spine J 2017;11:4–14. PMID:
28243363.
34. Sugawara T, Higashiyama N, Kaneyama S, Sumi M. Accurate and simple screw insertion procedure with patient-specific screw guide templates for posterior C1-C2 fixation. Spine (Phila Pa 1976) 2017;42:E340–E346. PMID:
27454537.
35. Takemoto M, Fujibayashi S, Ota E, et al. Additive-manufactured patient-specific titanium templates for thoracic pedicle screw placement: novel design with reduced contact area. Eur Spine J 2016;25:1698–1705. PMID:
25820409.
36. Chen H, Guo K, Yang H, Wu D, Yuan F. Thoracic pedicle screw placement guide plate produced by three-dimensional (3-D) laser printing. Med Sci Monit 2016;22:1682–1686. PMID:
27194139.
37. Chen H, Wu D, Yang H, Guo K. Clinical use of 3D printing guide plate in posterior lumbar pedicle screw fixation. Med Sci Monit 2015;21:3948–3954. PMID:
26681388.
38. Liu K, Zhang Q, Li X, et al. Preliminary application of a multi-level 3D printing drill guide template for pedicle screw placement in severe and rigid scoliosis. Eur Spine J 2017;26:1684–1689. PMID:
28028644.
39. Sugawara T, Higashiyama N, Kaneyama S, et al. Multistep pedicle screw insertion procedure with patient-specific lamina fit-and-lock templates for the thoracic spine: clinical article. J Neurosurg Spine 2013;19:185–190. PMID:
23705628.
40. Martelli N, Serrano C, van den, et al. Advantages and disadvantages of 3-dimensional printing in surgery: a systematic review. Surgery 2016;159:1485–1500. PMID:
26832986.
41. Xu N, Wei F, Liu X, et al. Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with ewing sarcoma. Spine (Phila Pa 1976) 2016;41:E50–E54. PMID:
26335676.
42. Kim D, Lim JY, Shim KW, et al. Sacral reconstruction with a 3D-printed implant after hemisacrectomy in a patient with sacral osteosarcoma: 1-year follow-up result. Yonsei Med J 2017;58:453–457. PMID:
28120579.
43. Serra T, Capelli C, Toumpaniari R, et al. Design and fabrication of 3D-printed anatomically shaped lumbar cage for intervertebral disc (IVD) degeneration treatment. Biofabrication 2016;8:035001PMID:
27431399.
44. Phan K, Sgro A, Maharaj MM, D'Urso P, Mobbs RJ. Application of a 3D custom printed patient specific spinal implant for C1/2 arthrodesis. J Spine Surg 2016;2:314–318. PMID:
28097249.
45. Mobbs RJ, Coughlan M, Thompson R, Sutterlin CE 3rd, Phan K. The utility of 3D printing for surgical planning and patient-specific implant design for complex spinal pathologies: case report. J Neurosurg Spine 2017;26:513–518. PMID:
28106524.
46. Spetzger U, Frasca M, Konig SA. Surgical planning, manufacturing and implantation of an individualized cervical fusion titanium cage using patient-specific data. Eur Spine J 2016;25:2239–2246. PMID:
26931333.
47. Yang Z, Li C, Sun H. Research advances of three-dimension printing technology in vertebrae and intervertebral disc tissue engineering. Zhejiang Da Xue Xue Bao Yi Xue Ban 2016;45:141–146. PMID:
27273987.
48. Rosenzweig DH, Carelli E, Steffen T, Jarzem P, Haglund L. 3D-printed ABS and PLA scaffolds for cartilage and nucleus pulposus tissue regeneration. Int J Mol Sci 2015;16:15118–15135. PMID:
26151846.