2. Zhang YH, Zhou FC, Zhang J, Song J, Shao J. Efficacy and safety of atlantoaxial fluoroscopy-guided pedicle screw fixation in patients younger than 12 years: a radiographic and clinical assessment. Spine (Phila Pa 1976) 2019;44:1412–7.
3. Berjano P, Ristori G, Ismael Aguirre MF, et al. A novel technique for spondylolysis repair with pedicle screws, rod and polyester band: case report with technical note and systematic literature review. Spine (Phila Pa 1976) 2020;45:E1682–91.
4. Viezens L, Sellenschloh K, Puschel K, et al. Impact of screw diameter on pedicle screw fatigue strength: a biomechanical evaluation. World Neurosurg 2021;152:e369–76.
6. Chen CS, Chen WJ, Cheng CK, Jao SH, Chueh SC, Wang CC. Failure analysis of broken pedicle screws on spinal instrumentation. Med Eng Phys 2005;27:487–96.
7. Kim YY, Choi WS, Rhyu KW. Assessment of pedicle screw pullout strength based on various screw designs and bone densities-an ex vivo biomechanical study. Spine J 2012;12:164–8.
8. Chatzistergos PE, Magnissalis EA, Kourkoulis SK. A parametric study of cylindrical pedicle screw design implications on the pullout performance using an experimentally validated finite-element model. Med Eng Phys 2010;32:145–54.
9. Benzel EC,Implant–bone interface. Benzel EC, editors. Biomechanics of spine stabilization. 3rd ed. New York (NY): Thieme; 2015. p.160–1.
12. Zhang QH, Tan SH, Chou SM. Investigation of fixation screw pull-out strength on human spine. J Biomech 2004;37:479–85.
13. Zhang QH, Tan SH, Chou SM. Effects of bone materials on the screw pull-out strength in human spine. Med Eng Phys 2006;28:795–801.
14. Chao CK, Hsu CC, Wang JL, Lin J. Increasing bending strength and pullout strength in conical pedicle screws: biomechanical tests and finite element analyses. J Spinal Disord Tech 2008;21:130–8.
16. Halvorson TL, Kelley LA, Thomas KA, Whitecloud TS 3rd, Cook SD. Effects of bone mineral density on pedicle screw fixation. Spine (Phila Pa 1976) 1994;19:2415–20.
17. Hirano T, Hasegawa K, Takahashi HE, et al. Structural characteristics of the pedicle and its role in screw stability. Spine (Phila Pa 1976) 1997;22:2504–10.
18. Abshire BB, McLain RF, Valdevit A, Kambic HE. Characteristics of pullout failure in conical and cylindrical pedicle screws after full insertion and back-out. Spine J 2001;1:408–14.
20. Varghese V, Saravana Kumar G, Krishnan V. Effect of various factors on pull out strength of pedicle screw in normal and osteoporotic cancellous bone models. Med Eng Phys 2017;40:28–38.
21. Weidling M, Oefner C, Schoenfelder S, Heyde CE. A novel parameter for the prediction of pedicle screw fixation in cancellous bone: a biomechanical study on synthetic foam. Med Eng Phys 2020;79:44–51.
22. Brasiliense LB, Lazaro BC, Reyes PM, et al. Characteristics of immediate and fatigue strength of a dual-threaded pedicle screw in cadaveric spines. Spine J 2013;13:947–56.
23. Salunke P, Karthigeyan M, Uniyal P, Mishra K, Gupta T, Kumar N. A novel pedicle screw design with variable thread geometry: biomechanical cadaveric study with finite element analysis. World Neurosurg 2023;172:e144–50.
25. Hickerson LE, Owen JR, Wayne JS, Tuten HR. Calcium triglyceride versus polymethylmethacrylate augmentation: a biomechanical analysis of pullout strength. Spine Deform 2013;1:10–5.
28. Hsu CC, Chao CK, Wang JL, Hou SM, Tsai YT, Lin J. Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses. J Orthop Res 2005;23:788–94.