3. Young IR. Significant events in the development of MRI. J Magn Reson Imaging 2004 20:183–6.
4. Kazamel M, Warren PP. History of electromyography and nerve conduction studies: a tribute to the founding fathers. J Clin Neurosci 2017 43:54–60.
5. Dewing SB. Modern radiology in historical perspective. Springfield (IL): Charles C. Thomas;; 1962.
8. Leone A, Guglielmi G, Cassar-Pullicino VN, Bonomo L. Lumbar intervertebral instability: a review. Radiology 2007 245:62–77.
9. Yao G, Cheung JP, Shigematsu H, et al. Characterization and predictive value of segmental curve flexibility in adolescent idiopathic scoliosis patients. Spine (Phila Pa 1976) 2017 42:1622–8.
10. Wood KB, Popp CA, Transfeldt EE, Geissele AE. Radiographic evaluation of instability in spondylolisthesis. Spine (Phila Pa 1976) 1994 19:1697–703.
14. Kawasaki S, Shigematsu H, Tanaka M, et al. Segmental flexibility in adolescent idiopathic scoliosis assessed using the fulcrum-bending radiography method. Clin Spine Surg 2020 33:E376–80.
15. Mishra N, Ramlan A, Tang KH, et al. A novel technique to achieve maximal bending in flexibility assessment by slot-scanning digital radiography in scoliosis: the new gold standard? Eur J Radiol 2021 141:109805.
18. Matzon JL, Lutsky KF, Ricci EK, Beredjiklian PK. Considerations in the radiologic evaluation of the pregnant orthopaedic patient. J Am Acad Orthop Surg 2015 23:485–91.
19. Jahnke RW, Hart BL. Cervical stenosis, spondylosis, and herniated disc disease. Radiol Clin North Am 1991 29:777–91.
20. Landman JA, Hoffman JC Jr, Braun IF, Barrow DL. Value of computed tomographic myelography in the recognition of cervical herniated disk. AJNR Am J Neuroradiol 1984 5:391–4.
21. Simon JE, Lukin RR. Diskogenic disease of the cervical spine. Semin Roentgenol 1988 23:118–24.
22. Chawla S. Multidetector computed tomography imaging of the spine. J Comput Assist Tomogr 2004 28 Suppl 1:S28–31.
24. Holmes JF, Akkinepalli R. Computed tomography versus plain radiography to screen for cervical spine injury: a meta-analysis. J Trauma 2005 58:902–5.
26. Newton PO, Hahn GW, Fricka KB, Wenger DR. Utility of three-dimensional and multiplanar reformatted computed tomography for evaluation of pediatric congenital spine abnormalities. Spine (Phila Pa 1976) 2002 27:844–50.
27. Firooznia H, Rafii M, Golimbu C, Tyler I, Benjamin VM, Pinto RS. Computed tomography of calcification and ossification of posterior longitudinal ligament of the spine. J Comput Tomogr 1984 8:317–24.
29. Nishimura S, Nagoshi N, Iwanami A, et al. Prevalence and distribution of diffuse idiopathic skeletal hyperostosis on whole-spine computed tomography in patients with cervical ossification of the posterior longitudinal ligament: a multicenter study. Clin Spine Surg 2018 31:E460–5.
30. Ghodasara N, Yi PH, Clark K, Fishman EK, Farshad M, Fritz J. Postoperative spinal CT: what the radiologist needs to know. Radiographics 2019 39:1840–61.
32. Yeom JS, Chung MS, Lee CK, Kim Y, Kim N, Lee JB. Evaluation of pedicle screw position on computerized tomography scans: technical note. J Neurosurg 2003 98(1 Suppl): 104–9.
33. Wellenberg RH, Hakvoort ET, Slump CH, Boomsma MF, Maas M, Streekstra GJ. Metal artifact reduction techniques in musculoskeletal CT-imaging. Eur J Radiol 2018 107:60–9.
34. Hartley KG, Damon BM, Patterson GT, Long JH, Holt GE. MRI techniques: a review and update for the orthopaedic surgeon. J Am Acad Orthop Surg 2012 20:775–87.
35. Hansen BB. Introducing standing weight-bearing MRI in the diagnostics of low back pain and degenerative spinal disorders. Dan Med J 2017 64:B5416.
37. Edelman RR. The history of MR imaging as seen through the pages of radiology. Radiology 2014 273(2 Suppl): S181–200.
39. Delfaut EM, Beltran J, Johnson G, Rousseau J, Marchandise X, Cotten A. Fat suppression in MR imaging: techniques and pitfalls. Radiographics 1999 19:373–82.
40. Alyas F, Saifuddin A, Connell D. MR imaging evaluation of the bone marrow and marrow infiltrative disorders of the lumbar spine. Magn Reson Imaging Clin N Am 2007 15:199–219.
41. Rubin JB, Enzmann DR, Wright A. CSF-gated MR imaging of the spine: theory and clinical implementation. Radiology 1987 163:784–92.
42. Taber KH, Herrick RC, Weathers SW, Kumar AJ, Schomer DF, Hayman LA. Pitfalls and artifacts encountered in clinical MR imaging of the spine. Radiographics 1998 18:1499–521.
43. Modic MT, Feiglin DH, Piraino DW, et al. Vertebral osteomyelitis: assessment using MR. Radiology 1985 157:157–66.
44. Haughton V, Schreibman K, De Smet A. Contrast between scar and recurrent herniated disk on contrastenhanced MR images. AJNR Am J Neuroradiol 2002 23:1652–6.
45. Bradley WG Jr, Waluch V, Yadley RA, Wycoff RR. Comparison of CT and MR in 400 patients with suspected disease of the brain and cervical spinal cord. Radiology 1984 152:695–702.
46. Pfirrmann CW, Dora C, Schmid MR, Zanetti M, Hodler J, Boos N. MR image-based grading of lumbar nerve root compromise due to disk herniation: reliability study with surgical correlation. Radiology 2004 230:583–8.
48. Lee S, Lee JW, Yeom JS, et al. A practical MRI grading system for lumbar foraminal stenosis. AJR Am J Roentgenol 2010 194:1095–8.
52. Williams RL, Hardman JA, Lyons K. MR imaging of suspected acute spinal instability. Injury 1998 29:109–13.
53. Ricart PA, Verma R, Fineberg SJ, et al. Post-traumatic cervical spine epidural hematoma: incidence and risk factors. Injury 2017 48:2529–33.
55. Tan J, Shen L, Fang L, et al. Correlations between posterior longitudinal injury and parameters of vertebral body damage. J Surg Res 2015 199:552–6.
57. DeSanto J, Ross JS. Spine infection/inflammation. Radiol Clin North Am 2011 49:105–27.
58. Cadiou S, Robin F, Guillin R, et al. Spondyloarthritis and sarcoidosis: related or fake friends?: a systematic literature review. Joint Bone Spine 2020 87:579–87.
59. Philpott C, Brotchie P. Comparison of MRI sequences for evaluation of multiple sclerosis of the cervical spinal cord at 3 T. Eur J Radiol 2011 80:780–5.
60. Chen CJ, Hsu HL, Niu CC, et al. Cervical degenerative disease at flexion-extension MR imaging: prediction criteria. Radiology 2003 227:136–42.
61. Guppy KH, Hawk M, Chakrabarti I, Banerjee A. The use of flexion-extension magnetic resonance imaging for evaluating signal intensity changes of the cervical spinal cord. J Neurosurg Spine 2009 10:366–73.
62. Harada T, Tsuji Y, Mikami Y, et al. The clinical usefulness of preoperative dynamic MRI to select decompression levels for cervical spondylotic myelopathy. Magn Reson Imaging 2010 28:820–5.
63. Zhang L, Zeitoun D, Rangel A, Lazennec JY, Catonne Y, Pascal-Moussellard H. Preoperative evaluation of the cervical spondylotic myelopathy with flexionextension magnetic resonance imaging: about a prospective study of fifty patients. Spine (Phila Pa 1976) 2011 36:E1134–9.
65. Weishaupt D, Schmid MR, Zanetti M, et al. Positional MR imaging of the lumbar spine: does it demonstrate nerve root compromise not visible at conventional MR imaging? Radiology 2000 215:247–53.
66. Mataki K, Koda M, Shibao Y, et al. Successful visualization of dynamic change of lumbar nerve root compression with the patient in both upright and prone positions using dynamic digital tomosynthesis-radiculography in patients with lumbar foraminal stenosis: an initial report of three cases. J Clin Neurosci 2019 62:256–9.
67. Lee RK, Griffith JF, Lau YY, et al. Diagnostic capability of low- versus high-field magnetic resonance imaging for lumbar degenerative disease. Spine (Phila Pa 1976) 2015 40:382–91.
69. Alyas F, Connell D, Saifuddin A. Upright positional MRI of the lumbar spine. Clin Radiol 2008 63:1035–48.
70. Gilbert JW, Wheeler GR, Lingreen RA, Johnson RR. Open stand-up MRI: a new instrument for positional neuroimaging. J Spinal Disord Tech 2006 19:151–4.
72. Du J, Carl M, Bydder M, Takahashi A, Chung CB, Bydder GM. Qualitative and quantitative ultrashort echo time (UTE) imaging of cortical bone. J Magn Reson 2010 207:304–11.
74. Rudisch A, Kremser C, Peer S, Kathrein A, Judmaier W, Daniaux H. Metallic artifacts in magnetic resonance imaging of patients with spinal fusion: a comparison of implant materials and imaging sequences. Spine (Phila Pa 1976) 1998 23:692–9.
78. Kang KW, Kim SE, Lee DS, Jung JK. Koh’s nuclear medicine. 4th ed. Seoul: Korea Medicine;; 2019.
79. O’Malley JP, Ziessman HA, Thrall JH. Nuclear medicine and molecular imaging: the requisites. 5th ed. Philadelphia (PA): Elsevier Health Sciences; 2020.
80. Zhao QM, Gu XF, Liu ZT, Cheng L. The value of radionuclide bone imaging in defining fresh fractures among osteoporotic vertebral compression fractures. J Craniofac Surg 2016 27:745–8.
81. Jordan E, Choe D, Miller T, Chamarthy M, Brook A, Freeman LM. Utility of bone scintigraphy to determine the appropriate vertebral augmentation levels. Clin Nucl Med 2010 35:687–91.
83. Minoves Font M. Clinical applications of nuclear medicine in the diagnosis and assessment of musculoskeletal sports injuries. Rev Esp Med Nucl Imagen Mol (Engl Ed) 2020 39:112–34.
84. Love C, Palestro CJ. Nuclear medicine imaging of bone infections. Clin Radiol 2016 71:632–46.
85. Gosfield E 3rd, Alavi A, Kneeland B. Comparison of radionuclide bone scans and magnetic resonance imaging in detecting spinal metastases. J Nucl Med 1993 34:2191–8.
86. Costelloe CM, Rohren EM, Madewell JE, et al. Imaging bone metastases in breast cancer: techniques and recommendations for diagnosis. Lancet Oncol 2009 10:606–14.
87. Hamaoka T, Madewell JE, Podoloff DA, Hortobagyi GN, Ueno NT. Bone imaging in metastatic breast cancer. J Clin Oncol 2004 22:2942–53.
88. Blake GM, Park-Holohan SJ, Cook GJ, Fogelman I. Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med 2001 31:28–49.
91. Park SM, Park JW, Lee HJ, et al. Diagnostic value of Technetium-99m bone scintigraphy in the detection of cervical spine metastases in oncological patients. Spine (Phila Pa 1976) 2017 42:1699–705.
92. Gheita TA, Azkalany GS, Kenawy SA, Kandeel AA. Bone scintigraphy in axial seronegative spondyloarthritis patients: role in detection of subclinical peripheral arthritis and disease activity. Int J Rheum Dis 2015 18:553–9.
93. Horger M, Bares R. The role of single-photon emission computed tomography/computed tomography in benign and malignant bone disease. Semin Nucl Med 2006 36:286–94.
94. Linke R, Kuwert T, Uder M, Forst R, Wuest W. Skeletal SPECT/CT of the peripheral extremities. AJR Am J Roentgenol 2010 194:W329–35.
95. Horger M, Eschmann SM, Pfannenberg C, et al. Evaluation of combined transmission and emission tomography for classification of skeletal lesions. AJR Am J Roentgenol 2004 183:655–61.
96. Gnanasegaran G, Paycha F, Strobel K, et al. Bone SPECT/CT in postoperative spine. Semin Nucl Med 2018 48:410–24.
98. Brusko GD, Perez-Roman RJ, Tapamo H, Burks SS, Serafini AN, Wang MY. Preoperative SPECT imaging as a tool for surgical planning in patients with axial neck and back pain. Neurosurg Focus 2019 47:E19.
99. Tender GC, Davidson C, Shields J, et al. Primary pain generator identification by CT-SPECT in patients with degenerative spinal disease. Neurosurg Focus 2019 47:E18.
100. Anderson K, Sarwark JF, Conway JJ, Logue ES, Schafer MF. Quantitative assessment with SPECT imaging of stress injuries of the pars interarticularis and response to bracing. J Pediatr Orthop 2000 20:28–33.
101. Perez-Roman RJ, Brusko GD, Burks SS, Serafini AN, Wang MY. Use of single-photon emission computed tomography imaging for hypermetabolic facet identification in diagnosis of cervical and axial back pain. World Neurosurg 2020 137:e487–92.
102. Ryan RJ, Gibson T, Fogelman I. The identification of spinal pathology in chronic low back pain using single photon emission computed tomography. Nucl Med Commun 1992 13:497–502.
103. McDonald M, Cooper R, Wang MY. Use of computed tomography-single-photon emission computed tomography fusion for diagnosing painful facet arthropathy: technical note. Neurosurg Focus 2007 22:E2.
104. Dumitru D, Amato AA, Zwarts MJ. Electrodiagnostic medicine. 2nd ed. Philadelphia (PA): Hanley & Belfus; 2002.
105. Lee DG, Chang MC. Dorsal scapular nerve injury after trigger point injection into the rhomboid major muscle: a case report. J Back Musculoskelet Rehabil 2018 31:211–4.
106. Kwak SY, Boudier-Reveret M, Chang MC. Watch out for slowly progressive weakness of the distal upper limb: it could be chronic acquired demyelinating neuropathy! Ann Palliat Med 2020 9:1285–7.
107. Rubin DI. Needle electromyography: basic concepts. Handb Clin Neurol 2019 160:243–56.